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Abstract 

The relationship between commuting costs and housing prices is a key determinant of 
urban residential structure. This paper provides the first estimates of both housing/commuting 
bid functions of heterogeneous households and the associated bid-function envelope. This 
approach clarifies the distinction between movement along a household’s bid function and a 
change in the slope of the envelope caused by household sorting. It also leads to tests of the 
hypotheses that households sort according to the slopes of their bid functions and that higher-
income households tend to live farther from worksites. Estimates based on house sales in the 
Cleveland area in 2000 largely support these two hypotheses and indicate that the price of 
housing is about one-third lower at a location that is 34 minutes from a worksite than it is at a 
location that requires a minimal commute, all else equal. 
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1. Introduction 

The relationship between access to jobs and housing prices is at the core of standard 

models of urban residential structure. In the most basic model, identical households value access 

to jobs, and the equilibrium housing price function, also called a bid-rent function (or a bid 

function for short), indicates how much more a household would pay for housing in a location 

with better job access. As explained by Alonso (1964) and many subsequent studies, this logic 

can be extended to a model containing multiple household types, each with its own bid function. 

In this case, the observed housing price function is the envelope of these bid functions, and the 

model sheds light on a key feature of American cities, namely, the sorting of households by 

income and other traits. Although the distinction between bid functions and their envelope is 

well known, it has been neglected in related empirical research. As Duranton and Puga (2015, p 

350) put it, “close to nothing is known regarding the effect of income heterogeneity on the 

various gradients.” This paper draws on the hedonic analysis of amenities in Yinger (2015b) to 

extend the literature by deriving bid functions that allow for households to differ on observed 

and unobserved traits, solving for the envelope of this bid-function family, and estimating this 

envelope using detailed data on house sales in the Cleveland area in 2000. 

The approach in this paper has several advantages. First, it can accommodate many 

different measures of job access, including linear distance, street distance, time along streets, and 

measures that account for multiple worksites. As explained in Section 2.5, the measures selected 

for the analysis of the Cleveland data are the ones that appear to best explain homebuyers’ 

commuting cost perceptions or that are closely linked to urban theory. Second, it is compatible 

with standard models of housing hedonics, which control for multiple housing and neighborhood 

characteristics. Third, it estimates a derived envelope for the household bid functions and thereby 

eliminates the confusion in the empirical literature between movement along a household type’s 
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bid function and a change in the slope of the envelope caused by the sorting of different 

household types into different locations. Fourth, it accounts for the possibility that households’ 

transportation costs and demand for housing—and hence their housing bids—are influenced by 

many traits, both observable and unobservable, not just by income. Finally, it leads to tests for 

two key hypotheses about urban residential structure: that households sort according to the 

slopes of their bid functions and that sorting based on access to jobs is “normal” in the sense that 

higher-income households tend to live farther from worksites. 

2. Model Development and Literature Review 

This section begins with a standard derivation of the relationship between the price of 

housing and the distance to a central worksite. The analysis is then extended to consider 

household heterogeneity, multiple worksites, a non-radial street network, traffic congestion, 

transportation mode choice, household perceptions of commuting costs, and neighborhood 

amenities. The discussion blends a literature review on each topic with an explanation of the 

model estimated later in the paper, which is designed to take advantage of the Cleveland data. 

a. Deriving a Bid Function 

In the basic urban model, households are assumed to be homogenous and to commute to 

work in the central business district, CBD. Households maximize their utility over a numeraire 

good, Z, housing, and location subject to a budget constraint that includes commuting costs. 

Housing is measured by housing services, H, which sell at a price P. The daily rental price of a 

house is PH; with a real daily discount rate of r and a long expected lifetime for housing, the 

sales price of a house, V, equals PH/r. Y is household income per day, T{u} is the round-trip cost 

of commuting u miles to the CBD, and P = P{u} varies with location. Thus, a household will 

 
Maximize { , }
Subject to { } { } .

U Z H
Y Z P u H T u= + +

 (1) 
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The first-order condition of (1) with respect to u is { } { } 0P u H T u′ ′+ = . With identical 

households, this equation is a locational equilibrium condition, usually written as: 

{ }{ } .T uP u
H
′−′ =  (2) 

This result applies for any utility or commuting-cost function. The standard numerator of 

(2), first presented by Muth (1969) and Mills (1972), assumes that round trip commuting costs 

per mile, t, are constant and equal operating costs, t0, plus time costs, tYY; that is, T{u} = tu = (t0 

+ tYY)u and T ′{u} = t.1 As shown by DeSalvo (1985), this approach can be derived from a model 

that includes a household’s time allocation decision. Let λ be the value of commuting time as a 

fraction of the wage rate. DeSalvo shows that λ will be less than one so long as the disutility of 

work time is greater than the disutility of commuting time. Then the value of tY is (2λ)/(8s) = 

(λ)/(4s), where s is speed in miles per hour (MPH), the 2 indicates a round trip, and the 8 

indicates hours in a working day. 

Alonso (1964) and Becker (1965) point out that households may focus on commuting 

time instead of distance. An urban model based on commuting time, v, can be specified by 

substituting v = u/s into the preceding equations. More generally, if we define m ∈ {u, v} (= 

miles or minutes!) then 

 
( )0{ }

m m m
Yt Y t tP m

H H
− + −′ = ≡  (3) 

where 

 0 0 0 0, , , and .
4 4

u u v v
Y Yt t t t t t s

s
λ λ

≡ ≡ ≡ ≡  (4) 

To obtain an explicit form for equation (3), I assume that 

 ( )( ) ( )1 { } ,m
YH Y t m P m

γ ηα= −  (5) 

where α measures determinants of H other than income and price, and γ and η are the income and 
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price elasticities of demand for H, respectively. 

A constant-elasticity form has been widely used in empirical research on housing (Zabel 

2004), albeit without commuting costs in the definition of net income. So far as I know, the only 

study that adds these costs is Blackley and Follain (1987). An income term with no adjustment 

for commuting costs also appears in many urban models, including those in Mills (1967, 1972) 

and Muth (1969). Kim and McDonald (1987) show that this approach arises when the income 

elasticity of demand for housing equals zero—a case rejected by the evidence (see Section 2.3). 

Equation (5) represents an intermediate case in which time and operating costs affect 

T{m}, time costs affect the demand for H, and operating costs either do not appear or else are 

proportional to income in the demand for H. In other words, either 0
mt  drops out of (5) or else it 

can be incorporated into . Three points support the first possibility: (a) Operating costs are 

generally thought to be much smaller than time costs and may therefore be ignored by 

households when they decide how much housing to buy. According to the U.S. Department of 

Transportation (2016), gas costs were 6.9 cents per mile in 2000. The median family income in the 

average Cleveland area block group in 2000 was $46,709, or almost $25 per hour for a 2,000-hour year. 

With time valued at half this wage and a commuting speed of 30 MPH, operating costs were only 14 

percent of total transportation costs. (b) The operating costs of commuting are blended with the 

operating costs of shopping, personal, and vacation trips in a household’s budget and may 

therefore not be salient in a household’s choice of H.2 (c) Transit fares in Cleveland in 2000 did 

not involve distance-based pricing. Alternatively, if 

m
Yt

0
mt  is proportional to income,  can be said 

to incorporate operating costs. When m = v, s, so a link between  and Y arises if s is 

linked to Y. Van Ommeren and Dargay (2006) fin

 = 

d a link of this type in the United Kingdom: “as 

incomes rise commuters choose faster modes, despite their higher monetary costs” (p. 294). 

m
Yt

0
mt 0t 0

mt
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Under some circumstances the elasticities in equation (5) can be interpreted as utility 

function parameters. These circumstances are defined by the “incomplete” demand system 

developed by LaFrance (1986), in which one set of commodities, Z, is not observed and 

influences the observed commodity, H, only through a price index. LaFrance shows that this 

demand system meets the standard integrability requirements, so its coefficients can be given 

structural welfare interpretations. The indirect utility function, ϒ, that yields LaFrance’s demand 

system with the income concept from (5) is 

 ( )( ){ } ( )( ) ( )
1

11 { }
1 , { } .

1 1

m
Ym

Y

Y t m P m
Y t m P m

γ
ηα

γ η

−
+−

ϒ − = −
− +

 (6) 

Applying Roy’s identity yields equation (5). 

Combining equations (3) and (5) yields the differential equation 

 
( )( )

{ } { } .
1

m

m
Y

tP m P m
Y t m

η
γ

α

−′ =
−

 (7) 

The solution is 

 
( )( ) ( )

1

(1 )(1 ) *
11{ } 1 ,

1

mm
Y m

Ym
Y

Y t mtP m C C t m
t Y

γ

γη ψ
α γ

−

−+
−  = + = + −   −  

 (8) 

where the C terms are constants, 

 ,
( )

m

m
Y

t
t Y γψ

α
=   (9) 

and the parentheses in an exponent indicate the Box-Cox form: ( ) ( 1) / if 0;X Xδ δ δ δ= − ≠ and

( ) ln{ } if 0.X Xδ δ= =  Note that tm may be a function of Y and other variables. 

b. Deriving the Bid-Function Envelope 

This paper provides the first empirical analysis of housing prices and job access in which 
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the nature of household heterogeneity is estimated, not assumed. This analysis builds on Alonso 

(1964, p. 76), who pointed out that the slope of the bid function varies across household types 

and that the observed market price function is the envelope of the household bid functions. The 

slope of a bid function varies across locations for a single household type, but household sorting 

depends only on the slope of a household’s bid function relative to that of other households at a 

given location. As shown in Figure 1, the household type with the steeper bid function at location 

m* bids more per unit of H closer to the worksite and therefore wins the competition for housing 

there. Under a standard regularity condition, called the single-crossing condition, a more general 

result is that households with relatively steeper functions sort into locations closer to worksites.3 

One approach to household heterogeneity is to define discrete household types. Miyao 

(1975) and Hartwick, Schweizer, Varaiya (1976), for example, derive models with bid functions 

for any number of discrete income-taste classes. A recent example is Guerrieri, Hartley, and 

Hurst (2013). This approach is quite limited for empirical purposes, however, because the nature 

of household heterogeneity must be assumed instead of estimated. 

Another approach to household heterogeneity is provided by Montesano (1972) and 

Duranton and Puga (2015). These scholars assume that household income is characterized by a 

Pareto distribution and that households have Cobb-Douglas utility functions. With the added 

assumption that operating costs equal zero, Montesano shows that the bid-function envelope in a 

monocentric urban model is a power function with an exponent that equals the utility-function 

exponent on land relative to the utility-function exponent on distance. Duranton and Puga 

assume that time costs equal zero. This assumption also leads to a bid-function envelope in the 
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Figure 1. Sorting Based on Access to Jobs 
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form of a power function, but the exponent is the shape parameter in the Pareto income 

distribution. Results for power-function envelopes are presented in Section 5.1, but these results 

cannot determine which of these two models is correct. 

This paper provides an alternative approach based on Yinger’s (2015b) analysis of 

neighborhood amenities, in which the hedonic is the mathematical envelope of the household bid 

functions. This hedonic form, which can be estimated, allows for both operating and time costs, 

permits variation in income with no assumption about the income distribution, and accounts for 

other variables in household bid functions, observed and unobserved. Moreover, this approach 

leads to tests of two well-known theorems: (1) household sorting is determined by the slopes of 

household bid functions and (2) that household income increases with distance from worksites. 

The key to this approach is to identify the factors that determine relative bid-function 

slopes, because these slopes determine sorting. The relevant slopes are “relative” because they 

need not account for factors that households share. In the bid function given by equation (8), the 

relative slope for a household type depends on the constant term in the housing demand function, 

α, household income, Y, and the components of transportation costs, m
Yt Y and 0

mt . The absolute 

slope obviously also depends on m and P, but the relative slope is defined as the slope at given 

values for these two variables, which are shared by households at any given m. Housing demand, 

and hence the relative slope of the bid function, may also depend, on many household traits, or: 

 * ,M ρ ζα α ε=  (10) 

where α* is a constant and household traits are either observed, M, or unobserved, ε.  

The envelope of a function P{m, ψ}, where ψ is a parameter, is the function that satisfies 

f{P, m, ψ} = 0 and ∂f /∂ψ = 0. The bid function given by equation (8) does not have an envelope 

because the constant term, C, is not a function of ψ, which implies, incorrectly, that the bid 
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functions never cross. The first step in deriving an envelope, therefore, is to find C{ψ}. 

Consider two households whose bid functions cross at m*. These households have 

different values of ψ and hence different bid function slopes, but, by the definition of “cross,” 

they also have the same bid, P*, at m*. As shown in Figure 1, therefore, the bid function with the 

flatter slope must have a smaller intercept. The derivation of an envelope involves solving for the 

constant term such that dP/dψ = 0 when m is held constant at m{ψ}, that is, at the value of m 

associated with the “winning” slope. Applying this approach to (8), we find that 

 
( )1

{ }

1 { }
1

m
Y

m m

t mdC
d

γ

ψ

ψ

ψ γ

−

=

−
= −

−
 (11) 

The second step is to assume a form for the hedonic equilibrium, that is, for the 

equilibrium relationship between m and ψ. The question is: How much does a homebuyer’s 

equilibrium location change as the relative steepness of its bid function changes? Consider first a 

linear equilibrium: 

 1 2 ,m σ σ ψ= +  (12) 

where the σs are parameters to be estimated. Because steeper bid-function slopes lead to lower m, 

σ2 is expected to be negative. This hypothesis is tested in section 5.1. 

This form of equilibrium can arise, or be approximately correct, under a wide range of 

circumstances. In an analysis of neighborhood amenities, such as school quality, Yinger (2015a) 

focuses on one-to-one matches in which every household type has a unique location. This 

approach makes it possible to obtain close equilibrium approximations using continuous 

functions. Yinger proves the following theorem: If the amenity (analogous to -m) has the same 

distribution as a linear transformation of the distribution of ψ, which measures household 

heterogeneity, then the equilibrium relationship between m and ψ is linear. The distributions of m 
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and ψ are unknown, of course, but the online appendix shows that the distribution of u from a 

standard urban model is approximately equal to the distribution of a linear transformation of ψ 

based on a log-normal distribution of income, ψ’s key component. As shown below, envelopes 

can also be derived with other assumptions about the form of the hedonic equilibrium. 

Substituting (12) into (11) and solving the resulting differential equation yields: 

 
( )2

1 2
0

2

1 ( )
,

(2 )(1 )

m
Y
m
Y

t
C C

t

γ
σ σ ψ

σ γ γ

− − + = +
 − −
 

 (13) 

where C0 is a constant of integration. Now the envelope can be derived by substituting (12) and 

(13) into (8). The result (for γ not equal to 1 or 2) is 

( ) ( ) ( ) ( )2 1
(1 ) 1 1

0
2 2

1 11 1{ } 1 ,
1 (2 ) 1

m m
Y YE m

Y m
Y

t m t m
P m C m t m

t

γ γ
η γ σ

σ γ γ σ γ

− −
+ −

    − −        ′= + − + −        − − −        

 (14) 

where C0′ = C0 - 1/(1+η). Equation (14) shows that estimates of the impact of m on P reflect both 

determinants of bid functions ( m
Yt  and γ) and the nature of the sorting equilibrium (σ1 and σ2). 

This envelope and bid functions for individual household types are illustrated in the first 

panel of Figure 2. The second panel plots the slopes of the envelope and of illustrative bid 

functions. The dotted line shows how the envelope slope increases along an individual bid 

function as m increases and also shifts up as the sorting process leads to a change in household 

type. This upward shift reflects a change in ψ. 

Table 1 presents alternative forms for the right side of the envelope, which arise when the 

derivation is repeated with the right side of (12) raised to the power (labeled σ3) ½ or 2. The third 

row corresponds to equation (14). When the right side of (12) is squared (σ3 = 2) the solution to 

the differential equation corresponding to (14) involves a hypergeometric function, and explicit 

solutions are available only for specific values of γ. The result in Table 1 reflects the lowest  
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Figure 2. Bid Functions and Envelopes 
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Table 1. Bid-Function Envelopes with Alternative Forms for the ψ Function 

Case Bid-Function Envelope Formula 
Square root ψ 
function; 
γ ≠ 1, 2, or 3 

( ) ( )1
1

2 1

2 2

1 2 (1 ) 1 (1 )1
3 (2 )(1 ) 1

m m m
Y Y Y

m
Y

t m t m t mm
t

γ
γγ σ

σ γ γ γ σ γ

−
−   − − +    −   + −       − − − −         

 

Square root ψ 
function; 
γ = 1 

( )
2

1
2

2 2

ln{1 }1 ln{1 }
2 ( )

m
mY
Ym m

Y Y

t mm m t m
t t m

σ
σ σ
    −

+ + − −    
    

 

Linear ψ function; 
γ ≠ 1 or 2 ( ) ( )2

11 1

2 2

1 (1 )1 1 1
(1 ) (2 ) 1

m m
Ym Y

Y m
Y

t m t mm t m
t

γ
γγ σ

σ γ γ σ γ

−
−

−
  −      −  − + −       − − −        

 

Linear ψ function; 
γ = 1 

( ) ( )1

2 2

ln{1 } 11 ln{1 }
m m
Y Y m

Ym
Y

t m t m
t m

t
σ

σ σ

 − − −   
  − −        

 

Quadratic ψ function; 
γ = 1.5 

{ }( )
1

2 2

2 arcsin1 2 2
1 1

m
Y

m m m
Y Y Y

t m m
t t m t m

σ
σ σ

         − +      − −       

 

Notes: This table indicates the right side of the bid-function envelope in various cases. Each right 
side also has a constant term; m is distance from a worksite (in miles or minutes); γ is the income 

elasticity of demand for housing; and m
Yt  is the time cost of commuting (as a share of the wage 

rate). The σs, which are to be estimated, are the parameters of the ψ function, which describes the 
sorting equilibrium. The left side is P{m}(1+η), where the parentheses indicate the Box-Cox form 
and η is the price elasticity of demand for housing. If η equals -1, the left side is ln{P{m}}. 
Because they are unrealistic, envelopes with γ > 1.5 are not presented.  
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value with a solution: γ = 1.5. The first and third cases can be written with Box-Cox forms but 

cannot be reduced to the Box-Cox estimated by Coulson (1991). 

One instructive approximation arises with γ = σ3 = 1. Because m
Yt m is commuting costs as 

a share of income, it is a small fraction, and ln{1 - m. As a result, the entry in row 

four of Table 1 reduces to a constant plus (σ1/σ2)( m) = βm, where β is the estimated 

coefficient. Assuming η = -1, ln{PE} is the dependent variable and this case is the semi-log 

specification used in most studies. In other words, a semi-log specification for m implicitly 

assumes that |η| = γ = 1 and that the ψ function is linear. Moreover, the coefficient in this 

specification contains the (unidentified) parameters describing the sorting equilibrium, so the 

common practice of interpreting this coefficient as a measure of tm or 

m
Yt m } ≈ - m

Yt

m
Yt

m
Yt  is not correct.4 

c. Household Sorting 

The usual pattern in American cities is for high-income households to live farther from 

worksites than do low-income households (Glaeser, Kahn, and Rappaport 2008). I call this 

“normal” sorting. As shown by Alonso (1964) and Muth (1969), the slope of the bid function, 

(8), depends on income, and higher-income households have flatter bid functions, and therefore 

live farther from worksites, whenever the income elasticity of transportation costs per mile, say 

χ, is less than γ. Becker (1965) derives a comparable result in a time-based model. Wheaton 

(1977b) finds that γ < χ. In this case, basic urban models cannot explain why income tends to rise 

with distance from the CBD. LeRoy and Sonstelie (1983) and Glaeser, Kahn, and Rappaport 

(2008) provide a possible explanation, namely, that normal sorting can arise if higher-income 

households use higher-speed modes, even if, for a given mode, γ < χ.   

The envelopes derived by Montesano (1972) and by Duranton and Puga (2015) cannot be 
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used to shed light on normal sorting. Both studies are based on a Cobb-Douglas utility function 

with γ = 1. The estimable Montesano envelope also assumes that operating costs equal zero, 

which implies that χ = 1, too. In this case, sorting based on income does not arise. Duranton and 

Puga set time costs equal to zero, so that χ = 0, and normal sorting occurs by definition. 

With the approach in this paper, normal sorting arises if ∂ψ/∂Y < 0, that is, if bid function 

slopes get flatter as Y increases. The first step in finding the sign of ∂ψ/∂Y is to calculate ψ using 

equation (12) and the estimated values of the σ parameters. The resulting ψ then can be regressed 

on the variables in equation (9), including Y. To facilitate an examination of income sorting, I 

assume that m m
Ct t Y χ= , where m

Ct  is a constant. With this assumption, equation (9) becomes 

**ln{ } ln{ } ( ) ln{ }C a Yψ χ γ= − + − , where C** is a constant. The coefficient of ln{Y} in this 

regression provides a direct test of the condition for normal sorting, (χ – γ) < 0. 

This test focuses on sorting that arises with the current configuration of highways and 

public transit. It does not provide a full analysis of sorting because this configuration reflects 

decisions about highways and public transit that were influenced by sorting in the past. 

Highways may have been built, for example, to please high-income residents in some suburbs. A 

full analysis of sorting also requires a historical analysis, such LeRoy and Sonstelie (1983). 

Nevertheless, this test can shed light on the extent to which current transportation networks in an 

urban area help to maintain sorting based on household income and other factors. 

d. Theoretical Analysis of Transportation Networks 

Most early urban models approximated commuting distance with straight-line distance 

from a house to the CBD. Subsequent models account for the street network, mode choice, traffic 

congestion, and the location of jobs.  

Starting with Alonso (1964), several studies address the impact of the street network on a 
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bid function. Hartwick and Hartwick (1972) and Yinger (1993a) solve urban models with a street 

grid, and Anas and Moses (1979) introduce mode choice in an urban model with circular streets 

and a few high speed radial transportation modes. Anas and Moses show that with the standard 

assumption of identical households, all the people in a particular location select the mode, 

subway or car, for example that leads to the lowest-cost commute to the CBD. Yinger (1993a) 

and Baum-Snow (2007) consider commuting arteries. These models are applications of the 

Anas/Moses approach to the choice of route, instead of the choice of mode. Different 

transportation networks lead, of course, to different maps, but many do not alter the equations of 

an urban model or the model’s comparative statics results. 

Traffic congestion is difficult to introduce into an urban model because commuting costs 

depend on where people live and where people live depends on commuting costs. 5 Nevertheless, 

several scholars have made progress introducing congestion into an urban model. Mills (1972), 

introduced congestion into an urban simulation model, and Solow (1972, 1973) solved a 

simplified urban model with congestion. Yinger (1993b) solves an urban model with congestion 

in the special case of a horizontal street grid with a single vertical commuting artery through the 

CBD. Ross and Yinger (2000) review urban models with congestion. 

The assumption that all workers commute to the CBD obviously is not realistic. White 

(1976, 1988) provides an urban model with both a CBD and a suburban employment ring, 

whereas Wieand (1987) and Yinger (1992, 1993a) explore models with discrete employment 

locations in the CBD and the suburbs.6 With this approach, the households who live in a given 

location all commute to the same worksite. 

e. Empirical Analysis of Transportation Networks 

Many empirical studies provide a general test of bid theory by including u or v as an 
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explanatory variable in a house-value regression. A few scholars address one or more of the 

above complexities: the street network, mode choice, congestion, and multiple worksites. 

First, some scholars (e.g. Coulson 1991) account for the nature of the street network by 

measuring distance to the CBD along streets instead of straight-line distance. This step may be 

important for accurate estimates; Yinger (1993a) shows that using straight-line distance can lead 

to measurement errors if the actual street network is a grid. Coulson (1991) also estimates the 

relationship between V and u using Box-Cox regression. He rejects both multiplicative and linear 

forms but does not provide a theoretical explanation for the final form he estimates.  

Several studies consider traffic congestion. To account for variation in congestion or the 

road network (and hence in t), Coulson estimates separate coefficients for u in different 

directions from the CBD. Ottensmann, Payton, and Man (2008) compare results for bid functions 

using distance along streets, free-flow commuting time, and congested commuting time.  

Bender and Hwang (1985), Ottensmann et al. (2008), and Waddell et al. (1993) estimate 

housing price models with multiple worksites. These studies calculate distance to employment 

clusters or average distance to jobs and estimate V as a function of these measures.7 The same 

issues arise in estimating population density functions, which depend on land rents. Heikkila et 

al. (1989) identify three assumptions: that different worksites are substitutes, complements, or 

somewhere in between. Allocating each household to a worksite as in Bender and Hwang builds 

on the first assumption.8 The other studies cited above are applications of the third. 

The unsettled nature of this literature reflects the fact that we do not know what 

households perceive about access to worksites when they bid on a house. Many scholars 

investigate the difference between actual commuting time and distance and commuters’ 

perceptions of time and distance. See, for example, Peer et al. (2014). These studies apply to 
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commuters, however, not to house buyers. No survey comparing perceived and actual 

commuting distance or time for house buyers is available. Thus, we have no direct evidence on 

home buyers’ perceptions of job access. They may use estimates of straight-line distance to the 

CBD, for example, they may take a trial run to their actual worksite, or they may consult an 

internet mapping program. Moreover, homebuyers might be concerned only with the access of 

their primary earner to his or her own current job; they might be concerned about access to a 

range of jobs for other members of their household or for the primary earner in the future; or they 

might be concerned about the job access of people to whom they might eventually sell their 

house. These perceptions link back to the three assumptions identified by Heikkila et al. (1989). 

An indirect approach to perception is to find the distance or time measures that best 

explain actual household bids on housing. This strategy is followed by Ottensmann et al. (2008) 

in their study of Indianapolis and by Diaz and Yinger (2018) in their analysis of commuting in 

Cleveland. Ottensmann et al. find that accounting for congestion and access to multiple 

worksites increases the explanatory power of a hedonic regression (the R-squared), but by an 

insignificant amount. Diaz and Yinger compare the explanatory power of many distance and 

time measures using several different approaches to the concept of explanatory power, including 

specification tests and a finite-mixture model. 

Diaz and Yinger define nine distance and nine time measures of job access at the Census 

block group (CBG) level. The first distance measure is actual commuting distance, which is 

estimated based on the actual time measure and tract-to-tract commuting data from the Census. 

The second two measures indicate the distance to the Terminal Tower, which is the visual center 

of the Cleveland downtown. The first of these measures uses straight-line distance, the second 

uses distance along streets.9 Several distance measures are based on five major worksites in the 
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Cleveland area identified by Yinger (2015b). Four of these sites are clusters of zip codes around 

a high-employment zip code. The fifth is a beltway. These five sites account for 75.8 percent of 

the jobs in the Cleveland area. The fourth and fifth distance measures are employment-weighted 

distances to the five worksites, using straight-line and street distance, respectively. The sixth and 

seventh distance measures are the first principal component for all the other measures, based on 

either straight-line or street distance. The eighth and ninth bring in the employment-weighted 

distance (straight-line or street) to all the zip codes linked to the beltway. Diaz and Yinger also 

define nine analogous time measures. Their tests indicate that actual commuting distance (time) 

and straight-line distance (time) to the Terminal Tower are the distance (time) measures with the 

greatest explanatory power. Moreover, these distance measures have slightly greater explanatory 

power than the comparable time measures. 

f. Neighborhood Amenities 

Alonso (1964) includes distance from the CBD, u, in the utility function. His main 

argument is that households may experience disutility with distance from jobs, but he also 

mentions that people may care about the “prestige” of a neighborhood. Formal analysis of this 

possibility was first provided by Polinsky and Shavell (1976), who consider the case of air 

pollution, and Yinger (1976), who considers the endogenous amenity of neighborhood ethnic 

composition. These studies assume that some amenity, A, is a function of u and then place A{u} 

in the household utility function. This approach has advantages for theoretical research on urban 

models, because it adds amenities without adding another locational dimension.  

In empirical research, however, amenities such as school or air quality can be measured 

independently of u, and a key issue is how to avoid bias in the estimated impact of u (or v) on 

house values that arises from omitted neighborhood amenities. This issue is addressed in the 
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literature on “hedonic” regressions, which explores the impact of amenities on house values. 

This literature builds on Rosen (1974), who applies the logic of bid functions and their envelope 

to the pricing of multi-attribute commodities, such as housing. His framework shows that 

observed housing prices are the envelope of the underlying bid functions of heterogeneous 

households and are not a function of household characteristics, such as income.10 Recent reviews 

of this literature include Taylor (2008) and Nguyen-Hoang and Yinger (2011). 

Diamond (1980) and Brueckner, Thisse, and Zenou (1999) show that neighborhood 

amenities can lead to household sorting. Yinger (2015b) builds on this research by deriving and 

estimating the envelope of household bid functions for a continuous amenity.11 He finds, for 

example, “that a one standard deviation increase in Y [income] leads, purely because of sorting, 

to a 0.82 standard deviation increase in” a measure of high school quality. His derivation also 

shows that a single right-side term for each amenity is not consistent with sorting; two terms are 

needed. These forms depend on the price elasticity of demand for the amenity, μ. This paper uses 

Yinger’s form for continuous amenities with μ = -0.75, which is the elasticity Yinger estimates 

for school quality and is close to the values he estimates for some other amenities.  

g. Local Taxes and the Final Estimating Equation 

A large literature, reviewed in Ross and Yinger (1999), shows that property taxes are 

capitalized into house values. Define β as the degree of property tax capitalization and τ as the 

effective property tax rate. Then the standard specification is to add βτ to the capitalization rate 

so that V = PH/(r + βτ).12 Some school districts in the Cleveland area also levy an income tax at 

rate y, which may affect house values. The final estimating equation is a multiplicative function 

of the envelope for job access, PE; tax measures, τ and y; envelopes for neighborhood amenity 

measures, Ai ; and structural housing characteristics, X.13  
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The error term,ε , reflects unobserved factors and individual bids that differ from market bids 

because of the relative bargaining skills of the people involved. 

3. Data 

This study builds on a subset of the data described in Brasington (2007) and Brasington 

and Haurin (2006), namely, data for all the house sales in the Cleveland MSA in 2000. This data 

set indicates sales price, housing characteristics, housing location, CBG characteristics, school 

performance, and air quality, among other things. Additional measures of worksite locations, job 

access, and neighborhood traits come from Yinger (2015b) and Diaz and Yinger (2018).  

The job-access measures examined in this study are listed in Panel A of Table 2. These 

measures provide a wide range of possibilities for homebuyer perceptions of job access. The first 

two measures for both distance and time are the “winning” measures in the Diaz and Yinger 

(2018) analysis: actual average commuting distance (time) and straight-line distance (time) to the 

Terminal Tower. The second measure corresponds to the formulation in a standard monocentric 

urban model. The third distance measure is the employment-weighted straight-line distance to 

the five Cleveland-area worksites described in Section 2.5. This measure corresponds to the 

“complements” view of worksite access. In other words, it assumes that house buyers care about 

access to all worksites based on the number of jobs they contain. The “substitutes” version of 

worksite access is represented by the fourth distance measure: straight-line distance to a 

residential location’s assigned worksite. This measure is the one incorporated into multi-center 

urban models, which sort households based on their job location. The assignment problem here is 

simpler, however, because jobs and households have already been allocated in the data and all  
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Table 2. Measures of Job Access 

Panel A: Definitions 
Measure Definition Mean Minimum Maximum 

Distance Measures (in Miles)    
DIST1 Estimated actual commuting distance 

(straight line) 7.97 3.01  29.04 
DIST2 Straight-line distance to Terminal Tower 13.39 1.11  41.36 
DIST3 Employment-weighted straight-line 

distance to worksites 13.20 7.27  39.52 
DIST4 Straight-line distance to assigned 

worksite 6.92 0.01  42.25  
    

Time Measures (in Minutes)    
TIME1 Actual commuting time 25.87 11.11  46.53 
TIME2 Estimated straight-line time to Terminal 

Tower 44.51  9.87  87.48 
TIME3 Employment-weighted straight-line time 

to worksites 46.31 25.97  86.26 
TIME4 Straight-line time to assigned worksite 32.33  4.24 121.39 

Panel B. Correlations 

Distance Measures 
  DIST1 DIST2 DIST3 DIST4 
DIST1  1.00    
DIST2  0.64 1.00   
DIST3  0.62 0.97 1.00  
DIST4  0.55 0.71 0.79 1.00 

      
Time Measures     

  TIME1 TIME2 TIME3 TIME4 
TIME1  1.00    
TIME2  -0.03 1.00   
TIME3  0.10 0.82 1.00  
TIME4  0.28 0.30 0.61 1.00 

      
Cross Correlations     

  DIST1 DIST2 DIST3 DIST4 
TIME1  0.26 -0.01 0.01 0.19 
TIME2  0.63 0.99 0.93 0.67 
TIME3  0.57 0.86 0.90 0.70 
TIME4   0.34 0.35 0.45 0.67 
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we need to do is ensure consistency between the number of jobs and households associated with 

a given worksite. See Diaz and Yinger (2018) for details of the allocation procedure. 

The four time measures are analogous to these distance measures. The first measure, 

actual commuting time from a CBG, comes directly from the Census. It obviously accounts for 

the street network, congestion, and worksite locations. The other three measures are based on a 

regression of the first measure on dummy variables for every residence-worksite tract 

combination (see Diaz and Yinger 2018). The coefficients of these variables indicate the time for 

each possible commuting trip. The second time measure is the estimated commuting time from a 

given residential tract to the Terminal Tower. The third time measure is the estimated 

employment-weighted average commuting time from a tract to the five Cleveland-area 

worksites. The fourth measure is the estimated commuting time to a tract’s assigned worksite. 

Panel B of Table 2 shows that the four distance measures are highly correlated with each 

other, whereas the correlations among time measures tend to be much smaller, particularly for 

correlations that involve TIME1. Moreover, the correlations between the distance and time 

measures are fairly high unless TIME1 is involved.  

 
4. Estimation Procedures 

a. Estimating Stages 

The forms in Table 1 are estimated in two stages. The first stage is a regression of ln{V} 

on housing characteristics, neighborhood (Census block group or CBG) fixed effects, and within-

CBG differences in geographic variables.14 The sample is all sales in CBGs with at least two 

sales. Each fixed effect captures the net impact on house values of all neighborhood traits, 

observed and unobserved, shared by the houses in a given CBG. The second stage uses the 

coefficients of the CBG fixed effects as the dependent variable and estimates the forms in Table 
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1—with the appropriate additions for amenities and local taxes. The sample is the set of CBGs. 

The same two-stage procedure with the same data is in Yinger (2015b). The same type of first 

stage appears in Epple, Peress, and Sieg (2010), although their second stage is different. 

 This approach has several advantages. First, the CBG fixed effects ensure that the 

coefficients of the structural housing traits are not biased due to omitted neighborhood variables. 

Second, this approach isolates the relationship between neighborhood housing prices and 

neighborhood traits, including job access, and thereby facilitates the consideration of different 

time and distance measures and of different estimating assumptions. Third, this approach 

facilitates optimal usage of both the distance and time variables. A distance variable is used to 

assign houses to worksites and then to control for within-CBG variation in job access, whereas 

several different time and distance variables are used to estimate bid-function envelopes at the 

CBG level. The assignment of houses to worksites must use the distance measure because the 

time variable does not indicate a location on a map. Moreover, because CBGs are relatively 

compact and homogeneous, variation in bids within a CBG can be explained with variables from 

a simple distance-based urban model that does not consider sorting around a given worksite. 

Variation in bid rents across CBGs cannot be explained, however, without considering sorting 

and the complexities of the urban transportation system. Using the tools developed in Section 2, 

these factors can be incorporated into the second-stage equation. 

4.2. The Hedonic Regression with Geographic Fixed Effects 

 The first-stage is a regression of ln{V} on housing traits, within-CBG differences, and 

CBG fixed effects. This regression includes seventeen housing traits and thirteen distance-based 

variables to measure the difference in those variables between the location of a house and the 

centroid of a CBG. Within-CBG differences in job access are not large. Nevertheless, CBGs are 
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sometimes a few miles across, so the first-stage regressions also control for within-CBG 

differences in job access, based on DIST3. Each within-CBG access variables is the difference 

between the house and CBG measures for all the CBGs assigned to a given worksite.15 

The first-stage regression is estimated with the STATA “areg” command. The final 

sample includes 22,880 observations and the R-squared is 0.7893. The variable indicating that a 

house has one story is not significant, but all other housing characteristics are significant with the 

expected sign. Nine of the 13 variables measuring within-CBG variation in neighborhood traits 

are significant, as is the set of 1,665 geographic fixed effects (p=0.000). The five within-CBG 

commuting variables are all significant at the 1 percent level. See the online appendix or Yinger 

(2015b), which uses the same first stage. 

4.3. The Bid-Function Envelope 

 The bid-function envelope is estimated in the second-stage regression using the sample of 

1,665 CBGs, the dependent variable is the set of coefficients for the CBG fixed effects, and the 

explanatory variables include one set of job access terms in Table 1, with an extensive set of 

public services, amenities, local taxes, and other geographic controls—but without the Xs. See 

the online appendix. Further discussion of these variables and results with a nonlinear 

specification for relative elementary test score, high school test score, percent black, and percent 

Hispanic and a simpler specification for the commuting variables is provided in Yinger (2015b).  

 I assume that the price elasticity of demand for housing, η, equals -1.0. This assumption 

implies that the dependent variable takes a log form, which is the approach in most hedonic 

studies. Some existing estimates suggest that -1.0 may be too high in absolute value for η. 

Goodman (1988), for example, estimates η = -0.77. However, Rapaport (1997) estimates a value 

of η near -1.0 using a model in which housing demand and location are simultaneously 
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determined. Moreover, Yinger (2015b) is unable to reject the hypothesis that η = -1.0 for several 

specifications similar to the ones estimated for this paper.  

Each right-side expression in Table 1 is based on a particular value of σ3 and contains 

four other parameters: σ1, σ2, γ, and m
Yt . Estimates of γ and m

Yt are available in the literature, and 

all the forms in Table 1 become linear when these two parameters are known. As a result, my 

strategy is to estimate the two parameters that describe the sorting equilibrium, σ1 and σ2, using 

OLS with a range of values for γ and t taken from previous studies. The errors are clustered at the 

school district level. I consider 3 assumptions about the hedonic equilibrium (= the three values 

of σ3 in Table 1), 2 assumptions about λ (0.3 and 1), and 3 assumptions about γ (0.3, 1, and 1.5).  

Small, Winston, and Yan (2005) find a median value of commuting time 7 percent below 

the median wage rate, which suggests λ ≈1.0. Other studies indicate that λ may be closer to 0.5 or 

even 0.3 (Small 2012), Equation (4) links λ and m
Yt . When m = v, a constant λ implies a constant 

 unless commuting 

speed, s, is constant, too. I assume that commuting speed equals the average speed in Cleveland 

in 2000: 20.8 MPH.16 For distance-based models, this treatment of time costs is most accurate 

when commuting speed exhibits little variation. Another possibility comes from Abrantes and 

Wardman (2011), who find that at a given wage, λ is higher for longer trips. Because longer trips 

tend to be taken at higher speed, λ/(4s) might be constant despite variation in s. 

In the case of γ, the value of 0.3 comes from Goodman (1988) and Zabel (2004). The 

value of 1.5 for γ is higher than any estimate in the recent literature, but it is required to consider 

the case of σ3 = 2. Because this case cannot be estimated with other values for γ, the final number 

of cases is (2×3×3 - 2×2) = 14. 

 

m
Yt . In the case of m = u, however, a constant λ does not imply a constant m

Yt
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5. Empirical Results 

a. Job-Access Envelopes 

Linear, power, and quadratic job-access envelopes appear in Table 3. The access 

coefficient for a linear envelope is negative and significant at the 5 percent level in every case 

except DIST1. As shown in Section 2.2, a linear form can approximate a theoretically derived 

envelope if σ3 = γ = 1. These results are consistent with this case. Recall, however, that the 

coefficient in this case is (σ1/σ2)( m
Yt ), so σ1, σ2, and λ cannot be identified. 

Results for the power function envelopes derived by Montesano (1972) and 

Duranton/Puga (2015) are in the second column. In five of the eight cases, the estimated 

coefficient is significant and positive as predicted by the Montesano model. We have no way of 

knowing, however, whether the implied utility weights on land are realistic. These results are 

also consistent with the Duranton/Puga model, because they imply a positive shape parameter for 

the Pareto income distribution. However, the implied shape parameters, which range from 0.10 

to 0.18, are far smaller than the shape parameters estimated for the two income measures 

(described in Section 5.2) in the Cleveland data, namely, 0.66 and 1.02.17 

The coefficients for the quadratic form are both statistically significant for DIST1, 

DIST3, and TIME1. Neither coefficient is significant for the other access measures.18 

Table 4 provides selected estimates of σ1 and σ2 using the forms in Table 1. For the access 

measures DIST1, DIST3, and TIME1, all fourteen cases yield significant coefficients (5 percent 

level or higher) with the expected signs for σ1 and σ2 (positive and negative, respectively). For 

DIST2 most cases produced a significant coefficient for σ1, but not for σ2. However, one case 

resulted in significant coefficients for both parameters and two others resulted in a significant 

coefficient for σ1 and a coefficient for σ2 that is significant at the 10 percent level. Despite its 
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Table 3: Access Envelopes Estimated with Simple Forms 

    Linear Log 
Quadratic, 
First Term 

Quadratic, 
Second Term 

Distance Measures (in Miles)    
DIST1 Estimated actual commuting distance (straight line) 
 Coefficient -0.00259 -0.05066 -0.02390 0.00075 

 t-Statistic (-0.97) (-1.72) (-2.39*) (2.47*) 
DIST2 Straight-line distance to Terminal Tower   
 Coefficient -0.00830 -0.10296 -0.01492 0.00014 

 t-Statistic (-3.64**) (-2.17*) (-1.49) (0.75) 
DIST3 Employment-weighted straight-line distance to worksites  
 Coefficient -0.00946 -0.20813 -0.02919 0.00043 

 t-Statistic (-4.42**) (-5.24**) (-3.34**) (2.29*) 
DIST4 Straight-line distance to assigned worksite   
 Coefficient -0.00449 -0.01195 -0.00624 -0.00002 

 t-Statistic (-5.53**) (-1.36) (-1.41) (-0.20) 
Time Measures (in Minutes)    
TIME1 Actual commuting time    
 Coefficient -0.00307 -0.08781 -0.01462 0.00021 

 t-Statistic (-2.77**) (-2.77**) (-2.28*) (2.03*) 
TIME2 Estimated straight-line time to Terminal Tower   
 Coefficient -0.00498 -0.17443 -0.00315 -0.00002 

 t-Statistic (-2.93**) (-2.06*) (-0.62) (-0.44) 
TIME3 Employment-weighted straight-line time to worksites 
 Coefficient -0.00437 -0.18173 -0.00188 -0.00003 

 t-Statistic (-5.06**) (-4.72**) (-0.44) (-0.61) 
TIME4 Straight-line time to assigned worksite   
 Coefficient -0.00094 -0.02033 -0.00069 0.00000 
  t-Statistic (-2.05*) (-1.68) (-0.59) (-0.25) 
Notes: The dependent variable is the constant plus the CBG fixed-effect from the first-stage 
regression; 1,665 observations (CBGs); other explanatory variables are the 58 locational traits 
listed in the online appendix or in Yinger (2015b) ; standard errors are clustered at the school-
district level; significance: * = 5%; ** = 1% 
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Table 4. Illustrative Access Envelopes Estimated with Theoretically 
Derived Forms 

  
Assumed 
Value of  Estimated Value of 

Access 
Measure λ γ σ3   σ1 σ2 

R-
Squared 

DIST3 0.3 0.3 0.5  1083.64 -200.77 0.7016 
     (4.22**) (-2.27*)  

DIST3 0.3 1.0 1.0  33.66 -4.38 0.7018 
     (6.60**) (-2.39*)  

DIST3 0.3 1.5 2.0  5.88 -0.48 0.7019 
     (11.20**) (-2.47*)  

DIST1 1.0 1.0 0.5  298.73 -274.03 0.6967 
     (8.22**) (-2.76**)  

DIST1 1.0 1.5 1.0  16.55 -10.17 0.6967 
     (13.75**) (-2.60**)  

DIST1 1.0 1.5 2.0  4.00 -1.40 0.6966 
     (24.03**) (-2.51*)  

DIST1 (IV) 1.0 1.0 1.0  25.08 -6.04 0.6723 
     (1.98*) (-1.00)  

TIME1 1.0 0.3 0.5  1207.76 -577.41 0.6963 
     (7.12**) (-2.15*)  

TIME1 1.0 1.0 1.0  34.93 -10.93 0.6962 
     (12.13**) (-2.10*)  

TIME1 0.3 1.5 2.0  5.92 -1.09 0.6952 
     (22.17**) (-2.09*)  

DIST2 0.3 1.0 0.5  -72723.48 -1847.04 0.7004 
     (-34.70**) (-2.33*)  

DIST4 1.0 1.5 0.5  1932.34 -3591.63 0.6989 
          (2.05*) (-1.26)   
Notes: The dependent variable is the CBG fixed-effect from the first-stage 
regression; 1,665 observations (CBGs); based on functional forms in Table 1; 
other explanatory variables are the 58 locational traits listed in the online 
appendix or in Yinger (2015b) (which measure school quality, ethnic 
composition, environmental quality, crime rates, and tax rates, among other 
things, plus county and worksite fixed effects); standard errors are clustered at 
the school-district level; significance: * = 5%; ** = 1%.  
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importance in urban models, DIST4 yielded a single significant coefficient: the one for σ1 with σ3 

= 0.5, λ = 1, and γ = 1.5. The results for TIME2, TIME3, and TIME4 are almost all insignificant 

and often have an unexpected sign. In fact, the only significant coefficient for these three 

measures is one estimate of σ1 using TIME4.  

These results support four central conclusions. First, insight into the structural parameters 

of the urban equilibrium, at least using the forms in this paper, is limited to estimations based on 

DIST1, DIST3, and TIME1. Second, the significant results for these three measures reveal that 

access to jobs can have a substantial impact on housing prices. To be specific, the price of 

housing at the location with the least-valued access compared to the location with the best access 

is about 12 percent lower for DIST1, 26 percent lower for DIST3, and 34 percent lower for 

TIME1. Homebuyers clearly care about job access. Third, the access measures with explanatory 

power all account for the existence of multiple worksites and support the “complements” view of 

job access, not the “substitutes” view. Fourth, the highly significant, negative estimates for σ2 for 

these three measures provide strong support for the hypothesis that household sorting, that is, the 

allocation of households to locations with different job access, depends on the relative slopes of 

households’ bid functions, which are measured by ψ. 

Panel A of Figure 3 compares envelopes for the four distance measures when σ3 = λ = 1 

and γ = 0.3.19 Results for other cases are similar. The envelopes for DIST1 and DIST3, which are 

the only ones based on significant estimates of σ1 and σ2, contain a surprise, namely, that their 

slope becomes positive at large distances.20 The effect is particularly pronounced for DIST1. In 

fact, the envelope is higher at the maximum than at the minimum distance. A milder version of 

this effect also appears for DIST3. In both cases, the turn-up in the envelope affects a small 

minority of the observations (between 16 and 59 out of 1,665), but this phenomenon, which also  
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Figure 3. Access Envelopes for Various Access Measures 
Panel A: Distance Measures with λ = γ = σ3 = 1 

  
Panel B: Distance and Time Measures with λ = γ = σ3 = 1 
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appears in the quadratic envelopes, obviously needs explaining, and we will consider it below. 

The highest explanatory power (= R-squared) is provided by DIST3, but differences 

across envelope specifications are small and insignificant, Panel A of Figure 4 shows how the 

results for this measure vary with various assumptions about λ and γ in the case of a linear 

hedonic equilibrium (σ3 = 1). The envelopes in this panel are all similar, but the curvature is 

somewhat higher with a high income elasticity (γ = 1.5). In addition, the quadratic envelope is 

virtually indistinguishable from the theoretically derived envelope with low values for λ and γ. 

Panel B illustrates the impact of σ3 on the hedonic in the case of a low value for λ and a high 

value for γ. The envelope has the highest curvature with σ3 = 0.5 and the lowest curvature with σ3 

= 2. The quadratic envelope is similar to the theoretically derived envelope with σ3 = 1. 

Now consider the puzzle that the envelope turns upward at large distances, particularly 

for DIST1. The key to understanding this puzzle is a point in Section 2.5, namely, that we are 

estimating the impact of buyer perceptions on house values. Even if a distance measure 

accurately captures miles traveled from a house that is for sale to a prospective buyer’s actual or 

anticipated job site, we do not know how the buyer gains information about distance or if the 

buyer adjusts distance measures to account for commuting speed or, in the case of straight-line 

measures, for route choices. As shown in equation (4), the difference between ( m
Yt m) in a 

distance-based model and a time-based model is that a constant commuting speed appears in  

in the distance-based version whereas varying commuting speed implicitly appears in m in the 

time-based version. This difference arises regardless of which formula in Table 1 is used. When 

one switches from a distance-based model to a time-based model, therefore, one is adding 

variation in speed. Now suppose homebuyers “correct” observed distance measures for their 

perceptions about actual speed. Because speed increases with distance from worksites, this  

m
Yt
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Figure 4. Access Envelopes for DIST3 
Panel A. Envelopes with σ3 = 1 

 

Panel B. Envelopes with λ = 0.3 and γ = 1.5 
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correction implies that moving another mile from worksites may increase bids because it is 

accompanied by an increase in commuting speed. In the case of DIST1, speed equals DIST1/TIME1. 

A regression of this speed measure on DIST1 indicates that a 10-mile increase in distance leads to a 3.2-

MPH increase in speed. The comparable figure for DIST3 is 0.3 MPH. Both estimates are highly 

significant. In short, the impact of a speed increase may outweigh the impact of a distance 

increase—causing an upturn in the envelope.  

Evidence that this type of correction is at work appears in a comparison of the envelopes 

for DIST1 and TIME1, which both refer to actual commuting patterns (Panel B of Figure 3). As 

predicted by the role of speed, the envelope is steeper and the upturn is less pronounced for 

TIME1 than for DIST1. Further evidence about the cause of this upturn can be obtained by 

assuming that the distance variables are measured with error because they do not account for 

variation in speed. One obvious way to address this problem is with instrumental variables 

connected with a homebuyer’s perceptions of commuting speed but without a direct link to house 

values. One such list contains the population density in a CBG’s zip code in 1990, the distance of 

the CBG from the point with average latitude and longitude in the metropolitan area, the 

difference between the employment-weighted straight-line and google distances to worksites, 

and the square of this difference. With these instruments and σ3 = γ = λ = 1, the upward turn in 

the envelope almost disappears. See Panel B of Figure 3.21 This evidence supports the 

“measurement error” hypothesis, but the estimate of σ2 has a t-statistic of only -1.0. See Table 4. 

Despite these results, the exclusion of speed from distance measures cannot be the full 

explanation for the turn up, because the TIME1 envelope turns up as well—but only for 55 

observations. Another possibility is that homebuyers are willing to pay for reliability, that is, for 

a lower variance in travel time, and that reliability is higher at greater distances, which involve 

more freeway travel far from downtown. Evidence that people care about reliability is provided 
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by Brownstone and Small (2005), Carrion and Levinson (2012), and Li et al. (2010). Yet another 

possibility comes from the finding that commuters place a higher value on their expected 

commuting time in congested situations (Small 2012). If homebuyers follow this pattern for their 

expected commuting time, then a constant value of travel time, which the estimates behind 

Figure 3 assume, overstates expected commuting costs at more distant, less congested locations. 

Actual bids are based on perceptions of congestion and how it is valued, so they may exceed bids 

based on a constant λ in distant locations. These possibilities cannot be investigated with the 

Cleveland data, but they are excellent topics for future research. 

Several additional sets of regressions were conducted to determine the robustness of these 

results. Separate envelopes were estimated for each worksite. The σ parameters for these 

envelopes were almost always insignificant. Moreover, neither dropping the worksite dummies 

nor using a parsimonious set of control variables (as defined in Yinger and Nguyen-Hoang, 

2016) led to a substantial change in the estimated job-access envelopes. 

5.2. Household Sorting 

The significant estimates of σ2 in Table 4 show that sorting depends on bid-function 

slopes. The next question is whether and how these slopes depend on household income. 

Estimates of σ1 and σ2 make it possible to calculate the relative slope of a household’s bid 

function, ψ, using equation (12), and hence to estimate equation (9), which provides and answer 

to this question. This section explores sorting for DIST1, DIST3, and TIME1.  

The upturn in the estimated access envelopes poses a theoretical and an empirical 

challenge for a sorting analysis. The theoretical challenge is that with the formulations in this 

paper a positive slope for the envelope requires a negative value for ψ. This requirement can be 

satisfied by assuming that the t term in (13) is negative, which implies that something, such as 
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increased travel-time reliability, leads people to place a higher value on longer commutes under 

some circumstances. When t switches from positive to negative at the minimum of the access 

envelope, the logic of sorting changes, too. Outside this minimum point, normal sorting arises if 

households’ now upward-sloping bid functions become steeper as income increases. It follows 

that normal sorting will arise in these locations if a higher income leads to a steeper bid function, 

that is, if the coefficient on the income term, (χ – γ), is positive. 

The empirical challenge is that sorting may differ for job access above and below the 

level at the access-envelope minimum (AEM). I address this challenge in two ways. First, I drop 

the (few) observations with access below this level when estimating my main models. Second, I 

divide job access into two regions (above and below access at the AEM) and estimate an 

endogenous switching model in which people select one of these regions. This model estimates 

the traits that sort a household into the region with access below access at the AEM and the traits 

that determine ψ in each region. 

Estimating (9) requires data on homebuyers’ traits, especially their income. This paper 

makes use of two data sets for these traits. The first is the Home Mortgage Disclosure Act 

(HMDA) loan file for the Cleveland area in 2000. The HMDA data have the great advantage for 

our purposes that they describe the traits of actual homebuyers, that is, of the households who 

made the purchases in the Cleveland data set. Moreover, this data set identifies the tract in which 

the sale took place, so it is possible to observe the average income of actual buyers in each tract. 

This data set also includes the sex, race, and ethnicity of the borrower and co-borrower, and 

whether the borrower took out a Veterans’ Administration or Federal Housing Authority loan. It 

is therefore possible to measure, for example, the probability that a home buyer in a given tract is 

African American. The disadvantages of this data set are that it does not include all home 
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purchases, cannot be linked to Census blocks, and only describes a few household traits.22 

The second data set comes from the U.S. Census, which provides household traits at the 

block-group level.23 These data can be used to estimate (9) under the assumption that households 

buying homes in a CBG in 2000 have traits that are similar to those of the households who 

already live in that CBG. This data set has information on many household traits, including the 

average age and education of household heads, the share of households who are recent movers, 

and whether the household speaks English as a second language. These are the traits of all 

households, however, not of recent homebuyers. The correlation between the HMDA and Census 

income measures is 0.56 (or 0.59 for their logs). 

I estimate two versions of equation (9) for each parameter set, one with HMDA income 

plus the available homebuyer characteristics in the HMDA data and one with Census income and 

selected household characteristics at the block-group level. The sample for each regression is the 

set of observations inside the AEM. Each regression yields an estimate of the income coefficient, 

(χ - γ), which provides a test for normal sorting. Overall, fourteen cases are estimated for three 

access measures (DIST1, DIST3, and TIME1) and two income variables (HMDA and Census). 

Examples of these results appear in Table 5.24  

The results support normal sorting for every access/income combination except one. All 

14 cases indicate normal sorting (i.e., a negative, significant coefficient for the income variable) 

using Census income and any of the three access measures or using HMDA income and DIST1. 

These results for DIST1 also hold for the IV regression in Figure 3. The results using HMDA 

income and TIME1 provide somewhat weaker support for normal sorting; all 14 coefficients are 

negative, 4 are significant at the 5 percent level, and 10 are significant at the 10 percent level. 

The one exception arises with HMDA income and DIST3, where all the coefficients are positive 
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Table 5: Illustrative Normal Sorting Tests 
    Income Coefficient for: 

Data Source λ γ σ3 DIST1 DIST3 TIME1 
Regressions for Downward-Sloping Portions of Envelope 
HMDA 1.0 0.3 0.5 -0.0893 0.0351 -0.0484 

    (-3.45**) (1.48) (-1.71) 
HMDA 0.3 0.3 1.0 -0.1035 0.0075 -0.0614 

    (-5.76**) (0.28) (-2.05*) 
HMDA 1.0 1.0 1.0 -0.1006 0.0159 -0.0544 

    (-4.62**) (0.55) (-1.85) 
HMDA (IV) 1.0 1.0 1.0 -0.0760   

    (-4.11**)   
Census 1.0 0.3 0.5 -0.1962 -0.1961 -0.1709 

    (-5.57**) (-3.88**) (-2.37*) 
Census 0.3 0.3 1.0 -0.2620 -0.2609 -0.1882 

    (-6.41**) (-4.35**) (-2.58**) 
Census 1.0 1.0 1.0 -0.2786 -0.2953 -0.1858 

    (-5.93**) (-4.67**) (-2.49*) 
Census (IV) 1.0 1.0 1.0 -0.1267   

    (-5.98**)   
Endogenous Switching Regressions for Entire Envelope 
HMDA 0.3 0.3 1.0    
 Downward Slope    -0.0986   

    (-5.54**)   
 Upward Slope    -6.3477   

    (-4.67**)   
HMDA 0.3 0.3 1.0    
 Downward Slope      -0.0757 

      (-2.56*) 
 Upward Slope      1.0317 

      (2.37*) 
Notes: The dependent variable is an estimate of ψ using equation (12); there are between 
1,606 and 1,649 observations for the first panel and 1,665 for the second. HMDA 
regressions include the probability that a loan applicant is black, Hispanic, a single male, a 
single female, part of a male couple, part of a female couple, a recipient of an FHA loan, or 
a recipient of a VA loan; HMDA regressions also identify observations filled in with loan 
amount or Census income. Census regressions also include CBG household shares that are 
over 65, have kids, are married, speak English as a second language, are Asian, moved in 
the last year, graduated from high school, have some college, have a BA degree, and have 
an advanced degree. Switching regressions are identified by various CBG traits. Illustrative 
full regression results are in the online appendix. Significance: * = 5%; ** = 1%. 
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but small and insignificant, indicating no sorting based on income. 

Table 5 also includes results for selected endogenous switching models. The model for 

DIST1 with λ = γ = 0.3 and σ3 = 1 and with HMDA income supports the conclusion from the 

simpler models that sorting is “normal” when the job-access envelope has a negative slope. In 

contrast, the switching model indicates that sorting is reversed when the envelope’s slope turns 

positive at locations with poor job access. These results suggest that high-income households are 

drawn to the locations where the AEM for DIST1 occurs. These results also arise for a variety of 

endogenous switching models and with Census income. Table 5 also presents results from an 

endogenous switching model for TIME1 and HMDA income. In this case, normal sorting arises 

both inside and outside of the access-envelope minimum. This result holds for a variety of 

specifications for the endogenous switching model with HMDA income. Presumably because of 

the limited number of observations above the AEM, models with TIME1 and Census income or 

with DIST3 and either income measure do not converge.  

 
6. Conclusions 

The core of urban economics is the impact of commuting costs on housing prices—and 

the associated household sorting. This paper estimates the first bid-function envelopes (i.e. 

hedonics) explicitly derived from job-access bid functions for heterogeneous households. The 

results shed light on many features of urban residential structure. 

A linear specification for a job-access envelope yields a significant coefficient for the 

access variable with seven of the eight access measures considered in this paper. Despite its 

widespread use in the literature, however, this specification cannot identify transportation costs 

because the coefficient of the access variable includes parameters of the hedonic equilibrium. A 

log specification yields a significant coefficient for the access variable in five of the eight cases. 
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This specification also cannot provide any information about transportation costs, and there is no 

way to determine whether it identifies the utility coefficient in Montesano (1972; which assumes 

no operating costs) or the income distribution parameter in Duranton and Puga (2015; which 

assumes no time costs). Moreover, neither of these specifications accurately approximates the 

shape of the envelope estimated with a more general specification. 

Both terms in a quadratic specification of the access variable are significant for three 

access measures (DIST1, DIST3, and TIME1). This form cannot identify structural parameters, 

but it provides a close approximation to the shape of the theoretically derived access envelope, 

especially in the case of a linear hedonic equilibrium (σ3 = 1).  

Three job-access measures yield significant estimates of the structural parameters σ1 and 

σ2 using the forms in this paper: DIST1, DIST3, and TIME1. These results imply that minimal 

job access can lower the price of housing in a neighborhood by as much as 12 to 34 percent, 

depending on the access measure. These three measures all account for multiple job sites and are 

consistent with the “complements” view of job access. The two forms most closely related to 

urban models, DIST2 and DIST4, do not yield significant estimates on a consistent basis.  

The theorem that household sorting across locations with different job access depends on 

bid-function slopes is fundamental to urban economics. The significant estimates of σ2 for 

DIST1, DIST3, and TIME1 provide the first direct confirmation of this theorem. 

The shape of the job-access envelope is similar for different assumptions about the value 

of time (λ) and income elasticity (γ) parameters within the range in the literature. It is also similar 

for different forms for the hedonic equilibrium, that is, for different values of σ3.  

The shape of the envelope is different, however, for different measures of access. To 

some degree, the large difference between the envelopes for DIST1 and TIME1 appears to 
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reflect the (probably inaccurate) assumption of a constant commuting speed in the DIST1 

formulation. Introducing instruments that account for factors that might influence expected 

commuting speed dramatically lowers the difference between the DIST1 and TIME1 envelopes.  

Even after accounting for the potential measurement error in DIST1, however, the 

envelopes for DIST1, DIST3 and TIME1 all exhibit an unexpected upward slope when access is 

near its minimum. This turn-up affects only a few observations, but it is not consistent with the 

standard assumptions about job access. This result is consistent, however, with the possibility 

that some feature of commuting that households value, such as low variance in trip time, 

increases so much as access declines in these low-access locations that it more than offsets the 

loss of access itself. Further investigation of this phenomenon clearly is warranted. 

All three measures with significant envelope parameters (DIST1, DIST3 and TIME1) 

have approximately equal explanatory power. One challenge for future research is to determine 

why these relatively uncorrelated measures of access can each lead to a statistically significant 

access envelope.25 Another promising topic is whether the widespread availability of mapping 

software boosts the explanatory power of access measures that account for the street network. 

Finally, the estimated bid functions almost always indicate normal sorting, defined as an 

equilibrium in which higher-income households live in locations with poorer job access. One 

important exception arises with the DIST3 access measure using the HMDA income measure. 

Yet another challenge for future research is to determine why normal sorting arises with some 

access measures but not with others. 

  

  



41 

References 

Abrantes, Pedro A.L., and Mark R. Wardman. 2011. “Meta-analysis of UK Values of Travel Time: An 

Update.” Transportation Research Part A 45 (1) (January): 1–17 

Alonso, William. 1964. Location and Land Use. Cambridge, MA: Harvard University Press. 

Anas, Alex, Richard Arnott, and Kenneth A. Small. 1998. “Urban Spatial Structure.” Journal of 

Economic Literature 36 (3) (September): 1426-1464. 

Anas, Alex, and Leon N. Moses. 1979. “Mode Choice, Transport Structure and Urban Land Use.” 

Journal of Urban Economics 6 (2): 228–246. 

Arnott, Richard, Tilmann Rave and Ronnie Schöb. 2005. Alleviating Urban Traffic Congestion. 

Cambridge, MA: MIT Press. 

Bayer, Patrick, Fernando Ferreira, Robert McMillan. 2007. “A Unified Framework for Measuring 

Preferences for Schools and Neighborhoods.” Journal of Political Economy 115 (4) (August): 558-

638. 

Baum-Snow, Nathaniel. 2007. “Suburbanization and Transportation in the Monocentric Model.” 

Journal of Urban Economics 62 (November): 405-423. 

Becker, Gary S. 1965. “A Theory of the Allocation of Time.” The Economic Journal 75 (299) 

(September): 493-517. 

Beckman, M. J. 1969. “On the Distribution of Urban Rent and Residential Density.” Journal of 

Economic Theory 1 (1) (June): 60-67. 

Bender, B. and H. Hwang. 1985. “Hedonic House Price Indices and Secondary Employment Centers.” 

Journal of Urban Economics 17 (1): 90-107. 

Blackley, Dixie M., and James R. Follain. 1987. “Tests of Locational Equilibrium in the Standard 

Urban Model.” Land Economics 63 (1) (February): 46-61. 

Brasington, David M. 2007. “Private Schools and the Willingness to Pay for Public Schooling.” 



42 

Education Finance and Policy 2 (2) (Spring): 152-174. 

Brasington, David M. and Donald R. Haurin. 2006. “Educational Outcomes and House Values: A Test 

of the Value-Added Approach.” Journal of Regional Science 46 (2) (May): 245-268.  

Brownstone, David and Kenneth A. Small. 2005. “Valuing Time and Reliability: Assessing the 

Evidence from Road Pricing Demonstrations.” Transportation Research Part A: Policy and Practice 

39 (4) (May): 279–293. 

Brueckner, Jan K., Jacques-Francois Thisse, and Yves Zenou. 1999. “Why Is Central Paris Rich and 

Downtown Detroit Poor? An Amenity-based Theory.” European Economic Review 43 (1) (January): 

91-107. 

Carrion, Carlos, and David Levinson. 2012. “Value of Travel Time Reliability: A Review of Current 

Evidence.” Transportation Research Part A: Policy and Practice 46 (4) (May): 720-741 

Center for Neighborhood Technology. Undated. “Cleveland OH CMSA.” Chp-pub-hl06-cleveland.pdf. 

Coulson, N. Edward 1991. “Really Useful Tests of the Monocentric Model.” Land Economics 63 (3) 

(August): 299-307. 

DeSalvo, Joseph S. 1985. “A Model of Urban Household Behavior with Leisure Choice.” Journal of 

Regional Science 25 (2) (May): 159 – 174. 

Diamond, Douglas B., Jr. 1980. “Income and Residential Location: Muth Revisited.” Urban Studies 17: 

1-12. 

Diaz, Carlos, and John Yinger. 2018. “Perceptions of Commuting Costs.” Working Paper, Syracuse 

University, August. 

Duranton, Gilles, and Diego Puga. 2015. “Urban Land Use,” In Handbook of Regional and Urban 

Economics, Volume 5A, edited by G. Duranton, J.V. Henderson, and W. Strange (North-Holland): 

467-560. 



43 

Epple Dennis, Michael Peress, and Holger Sieg. 2010. “Identification and Semiparametric Estimation 

of Equilibrium Models of Local Jurisdictions.” American Economic Journal: Microeconomics 2 (4): 

195-220. 

Goodman, Allen C. 1988. “An Econometric Model of housing Price, Permanent Income, Tenure 

Choice, and Housing Demand.” Journal of Urban Economics 23 (3) (May): 327-353. 

Goodspeed, Timothy J. 1989. “A Re-examination of the Use of Ability to Pay Taxes by Local 

Governments,” Journal of Public Economics 38 (3): 319-342. 

Glaeser, Edward L., Matthew E. Kahn, and Jordan Rappaport. 2008. “Why Do the Poor Live in Cities? 

The Role of Public Transportation.” Journal of Urban Economics 63 (1) (January): 1–24. 

Grant, A. 2014. Traffic Congestion Easing across Northeast Ohio." Cleveland.com. Advance Digital, 

12 Aug. 2014. Web. 11 Oct. 2016.  

Guerrieri, Veronica, Daniel Hartley, and Erik Hurst. 2013. “Endogenous Gentrification and Housing 

Price Dynamics.” Journal of Public Economics 100 (April): 45-60. 

Hartwick, P.G. and J.M. Hartwick. 1972. “An Analysis of an Urban Thoroughfare.” Environment and 

Planning A 4: 193–204. 

Hartwick, John, U. Schweizer, and P. Varaiya. 1976. “Comparative Statics of a Residential Economy 

with Several Classes.” Journal of Economic Theory 13 (3): 396-413. 

Heikkila, E., P. Gordon, J. I. Kim, R. B. Peiser, H. W. Richardson, and D. Dale-Johnson. 1989. “What 

Happened to the CBD-Distance Gradient?: Land Values in a Policentric City.” Environment and 

Planning A 21 (2): 221-232. 

Kim, Kyung-Hwan and John F. McDonald. 1987. “Sufficient Conditions for Negative Exponential 

Densities: A Further Analysis.” Journal of Regional Science 27 (2) (May): 295-298. 

LaFrance, Jeffrey T. 1986. “The Structure of Constant Elasticity Demand Models.” American Journal of 

Agricultural Economics (August): 543-552. 



44 

LeRoy, S, and Jon Sonstelie. 1983. “Paradise Lost and Regained: Transportation Innovation, Income 

and Residential Location.” Journal of Urban Economics 13 (1) (January): 67–89. 

Li, Zheng, David A. Hensher, and John M. Rose. 2010. “Willingness to Pay for Travel Time Reliability 

in Passenger Transport: A Review and Some New Empirical Evidence.” Transportation Research 

Part E: Logistics and Transportation Review 46 (3) (May): 384–403 

McMillen, Daniel P. and Stefani C. Smith. 2003. “The Number of Subcenters in Large Urban Areas.” 

Journal of Urban Economics 53: 321–338 

Mills, Edwin S. 1967. “An Aggregative Model of Resource Allocation in a Metropolitan Area.” The 

American Economic Review 57 (2) (May): 197-210. 

Mills, Edwin S. 1972. Studies in the Structure of the Urban Economy. Baltimore: The Johns Hopkins 

University Press. 

Miyao, Takahiro. 1975. “Dynamics and Comparative Statics in the Theory of Residential Location,” 

Journal of Economic Theory 11: 133-146. 

Montesano, Aldo. 1972. “A Restatement of Beckman’s Model on the Distribution of Urban Rent and 

Residential Density.” Journal of Economic Theory 4 (2) (April): 329-354. 

Muth, Richard F. 1969. Cities and Housing: The Spatial Pattern of Urban Residential Land Use. 

Chicago: University of Chicago Press. 

Nguyen-Hoang, Phuong, and John Yinger. 2011. “The Capitalization of School Quality into House 

Values: A Review.” Journal of Housing Economics 20 (1) (March): 30-48. 

Ottensmann, John R., Seth Payton, and Joyce Man. 2008. “Urban Location and Housing Prices within a 

Hedonic Model.” Journal of Regional Analysis and Policy 38 (1):19-35. 

Peer, Stefanie, Jasper Knockaert, Paul Koster, and Erik T. Verhoef. 2014. “Over-reporting vs. Over-

reacting: Commuters’ Perceptions of Travel Times.” Transportation Research Part A 69: 476-494. 



45 

Polinsky, A.Mitchell and Steven Shavell. 1976. “Amenities and Property Values in a Model of an 

Urban Area.” Journal of Public Economics 50 (1-2) (January/February): 119-129. 

Pogodzinski, J.M. and D.L. Sjoquist. 1993. “Alternative Tax Regimes in a Local Public Good Model.” 

Journal of Public Economics 50 (1): 115-141. 

Rapaport, Carol. 1997. “Housing Demand and Community Choice: An Empirical Analysis,” Journal of 

Urban Economics 42 (2) (September): 243–260. 

Rosen, Sherwin. 1974. “Hedonic Prices and Implicit Markets: Product Differentiation in Pure 

Competition.” The Journal of Political Economy 82 (1) (January/February): 34-55. 

Ross, Stephen L., and John Yinger. 2000. “Timing Equilibria in an Urban Model with Congestion.” 

2000. Journal of Urban Economics 47 (3) (May): 390-413. 

Ross, Stephen L., and John Yinger. 1999. “Sorting and Voting: A Review of the Literature on Urban 

Public Finance.” In Handbook of Urban and Regional Economics, Volume 3, Applied Urban 

Economics, edited by P. Cheshire and E. S. Mills (North-Holland): 2001-2060. 

Sieg, Holger, V. Kerry Smith, H. Spencer Banzhaf, and Randy Walsh. 2002. “Interjurisdictional 

Housing Prices in Locational Equilibrium.” Journal of Urban Economics 52 (1) (July): 131-153. 

Small, Kenneth A. 2012. “Valuation of Travel Time.” Economics of Transportation 1 (1–2) 

(December): 2-14. 

Small, Kenneth A. Clifford Winston, and Jia Yan. 2005. “Uncovering the Distribution of Motorists’ 

Preferences for Travel Time and Reliability.” Econometrica 73 (4): 1367-1382. 

Solow, Robert M. 1973. “Congestion and the Use of Land for Streets.” Bell Journal of Economics and 

Management Science 4 (2) (Autumn): 602-618. 

Solow, Robert M. 1972. “Congestion, Density, and the Use of Land in Transportation.” Swedish 

Journal of Economics 74 (1) (March): 161-173. 

http://faculty.maxwell.syr.edu/jyinger/Classes/ECN741/Readings/Polinsky-Shavell.pdf
http://faculty.maxwell.syr.edu/jyinger/Classes/ECN741/Readings/Polinsky-Shavell.pdf


46 

Taylor, Laura O. 2008. “Theoretical Foundations and Empirical Developments in Hedonic Modeling.” 

In Hedonic Methods in Housing Markets: Pricing Environmental Amenities and Segregation, edited 

by A. Baranzini, J. Ramirez, C. Schaerer, and P. Thalmann (Springer): 15-54. 

Thaler, R. H. 1999. “Mental Accounting Matters.” Journal of Behavioral Decision Making 12 (3): 183–

206. 

U.S. Department of Transportation, Bureau of Transportation Statistics. 2016. “Table 3-14: Average 

Cost of Owning and Operating an Automobile.” Available at: https://www.bts.gov/content/average-

cost-owning-and-operating-automobile .  

Van Ommeren, Jos, and Joyce Dargay. 2006. “The Optimal Choice of Commuting Speed: 

Consequences for Commuting Time, Distance and Costs.” Journal of Transport Economics and 

Policy 40, Part 2 (May): 279-296. 

Waddell, Paul, Brian J. L. Berry, and Irving Hoch. 1993. “Residential Property Values in a Multinodal 

Urban Area: New Evidence on the Implicit Price of Location.” The Journal of Real Estate Finance 

and Economics 7 (2) (September): 117-141. 

Wheaton, William C. 1977a. “A Bid-Rent Approach to Housing Demand.” Journal of Urban 

Economics 4 (2) (April): 200-217. 

Wheaton, William C. 1977b. “Income and Urban Residence: An Analysis of Consumer Demand for 

Location.” American Economic Review 67 (4) (September): 620-631. 

White, Michelle J. 1988. “Location Choice and Commuting Behavior in Cities with Decentralized 

Employment.” Journal of Urban Economics 24 (2) (September): 129-152. 

White, Michelle J. 1976. “Firm Suburbanization and Urban Subcenters.” Journal of Urban Economics 

3 (4) (October): 383-396. 

Wieand, Kenneth F. 1987. “An Extension of the Monocentric Urban Spatial Equilibrium Model to a 

https://www.bts.gov/content/average-cost-owning-and-operating-automobile
https://www.bts.gov/content/average-cost-owning-and-operating-automobile


47 

Multicenter Setting: The Case of the Two-center City.” Journal of Urban Economics 21 (3) (May): 

323-343. 

Yinger, John. 2015a. “Hedonic Equilibria in Housing Markets: The Case of One-to-One Matching.” 

Journal of Housing Economics 29 (September): 1-11. 

Yinger, John. 2015b. “Hedonic Markets and Sorting Equilibria: Bid-Function Envelopes for Public 

Services and Neighborhood Amenities.” Journal of Urban Economics 86 (March): 9-25. 

Yinger, John. 1993a. “Around the Block: Urban Models with a Street Grid.” Journal of Urban 

Economics, 33 (3) (May): 305-330. 

Yinger, John. 1993b. “Bumper to Bumper: A New Approach to Congestion in an Urban Model.” 

Journal of Urban Economics 34 (2) (September): 249-274. 

Yinger, John. 1992. “City and Suburb: Urban Models with More than One Employment Center.” 

Journal of Urban Economics, 31(2) (March): 181-205. 

Yinger, John. 1979. “Estimating the Relationship between Location and the Price of Housing.” Journal 

of Regional Science, 19 (3) (August): 271-286. 

Yinger, John. 1976. “Racial Prejudice and Racial Residential Segregation in an Urban Model.” Journal 

of Urban Economics 3(4) (October): 383-396. 

Yinger, John, and Phuong Nguyen-Hoang. 2016. “Hedonic Vices: Fixing Inferences about Willingness 

to Pay in Recent House-Value Studies.” Journal of Benefit-Cost Analysis 7 (2) (Summer): 248-291. 

Zabel, Jeffrey A. 2004. “The Demand for Housing Services.” Journal of Housing Economics 13 (1) 

(March): 16-35.   



48 

Endnotes 

1 Alonso (1964, p. 134) suggests something similar, namely to “measure time and cost to each location, 

and to have bid price be a function of both these variables.”  

2 This point can be interpreted as an application of the notion of “framing” from behavioral economics 

(Thaler 1999). If households classify items into different “mental accounts,” then commuting costs may 

appear in the “transportation” mental account and have no impact on decisions about H. 

3 These points were introduced by Alonso (1964, ch. 5). 

4 With homogeneous households, equation (12) is the market price function. If η = 0, this function 

approximates a semi-log, but the coefficient of m is [(1-γ) tm], so tm is still not identified.  

5 Arnott, Rave, and Schöb (2005) and others explore traffic congestion outside an urban model.  

6 Graphs (but not formal models) of these and similar cases can be found in Alonso (1964), 

7 McMillen and Smith (2003) and Yinger (2015b) discuss methods to identify worksites. 

8 Anas et al. (1998) acknowledge the first assumption but say “We are not aware of any empirical support 

for this form, however, and it is rarely used in applied work” (p. 1441). 

9 Distance along streets is measured using a mapping program. This distance applies to 2013 but no 

significant new highways were built in Cleveland between 2000 and 2013 (Grant 2014). 

10 This paper does not include neighborhood income because, thanks to sorting, it is highly correlated 

with individual income, which does not belong in an envelope. See Yinger (2015b). 

11 Alternative approaches to amenity bids and envelopes can be found in Epple, Peress, and Sieg (2010) 

and Bayer, Ferreira, and McMillan (2007).  

12 Several school districts in the Cleveland area have an income tax, usually with a 1 percent rate. 

Goodspeed (1989) and Pogodzinski and Sjoquist (1993) model the capitalization of such taxes. 

13 Sieg et al. (2002) discuss the conditions under which this specification, which is a price index 

multiplied by a quantity index, is “consistent with locational equilibrium models” (p. 139). 

14 A few CBGs are split because they are divided by a school district boundary. 
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15 Diaz and Yinger (2018) find that the CBG fixed effects based on regressions with different distance 

measures are almost perfectly correlated. The focus on DIST3 is not consequential. 

16 Based on Center for Neighborhood Technology (Undated), I use a speed of 20.8 in all distance 

regressions. Although this document is undated it presents statistics from the 2000 Census. 

17 These parameters were estimated by creating a histogram for each income measure in STATA, 

collecting the shares and midpoints, and regressing the log of the shares on the log of the midpoints. The 

shape parameter is the negative of the midpoint coefficient minus one. 

18 Adding 1/m to a quadratic yields an approximation to the second form in Table 1 (σ3 = 0.5 and 

γ = 1). This approach (not shown) does not yield a significant σ1 or σ2 for any access measure. 

19 These envelopes are anchored at their minimum and adjusted to have the same starting price. 

20 Equation (13) implies a positive slope whenever σ2 < 0 and m > σ1. 

21 The first-stage Cragg-Donald Wald F-statistic is 12.7. The associated Stock-Yugo weak ID test critical 

value for a 15 percent maximal IV size is 9.93 and for a 5 percent IV relative bias is 11.04. The Hanson J 

statistic is 0.518, which has a Chi-squared P-value of 0.7718. 

22 HMDA data are not available for 335 of the 1,665 observations. The HMDA income variable and 

race/ethnicity variables were filled in with the Census data for these observations, and the HMDA 

regressions include a dummy for this fill-in. A few observations included all HMDA variables except 

income; for these 19 observations income was filled in using the loan amount. 

23 Median owner income is in my data set only at the tract level. I estimate median owner income as a 

function of other tract-level traits that are also observed at the block-group level and then use the 

estimated coefficients to predict median owner income at the block-group level. 

24 CBG race and ethnicity are neighborhood amenities in the first-stage regression (Appendix Table B1), 

so it is not appropriate to include them in a bid-function regression based on Census income. 

25 Diaz and Yinger (2018) find that the principal component for variation in all distance (time) measures 

does not have as much explanatory power as DIST1 or DIST3 (TIME1). 
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